
AFOSR- -TR-96

Final Technical Report (2/1/95-3/31/96)

AFOSR Grant No. F49620-95-1-0126

•DEVELOPMENT OF AN ADVANCED IMPLICIT
ALGORITHM FOR MHD COMPUTATIONS

ON PARALLEL SUPERCOMPUTERS"

Submitted to

Air Force Office of Scientific Research
Boiling AF Base

Washington, DC 20332-8080

ÄEPioved tea eublie releases
3p., Dtexnrnrnas, UaüsoJted
»'Mi. In'.

UNIVERSITY OF WASHINGTON
Aerospace & Energetics Research Program, Box 352250

Seattle, Washington 98195-2250

Dr. Uri Shumlak
Principal Investigator

May 31, 1996

DTIC QUALITY IHSEECTED 1

unclassified/unlimited
" SECTS''"v .:.-»SS-F'Ci* -*• -p "-'S'lOE

•T
I/J'-a^ÄiföTiOit &£&Y£.l£'±l<:st Ä

REPORT DOCUMENTATION PAGE

iigpio^ed tea g-oslAc reieo£®3
^--.■■■ rr-^imiif TIIJL jiTuinümBS ,.,;?!

)s REPORT SECURITY CLASSIFICATION

unclassified/unlimited
Jl. SECwRlTV CLASSIFICATION AUTHORITY

10. RESTRICTIVE MARKINGS

3b. OECLASSIFICATION/DOWNGRAOING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBERISI

6». NAME OF PERFORMING ORGANIZATION Sb. OFFICE SYMBOL

Aerospace & Energetics
Research Program

Htapplicable i

2250
6,c, A.ODRESS. (City Sjau,andL 7JP Codei
University of wasrnngton
Grant & Contract Services
3935 Univ Way NE, Seattle, WA 98105-6613

■A. NAME OF FUNDING/SPONSORING
ORGANIZATION

AFOSR

8b. OFFICE SYMBOL
II f applicable I

/NM

8c. AOORESS (City. Statt and ZIP Cod«)

110 Duncan Avenue, Suite B115
Boiling AFB, DC 20332-8080

11 TITLE iInclude Security Classification! "DEVELOPMENT OF

AN AnVANP.Fn IMPLICIT AlfiQRITHM FOR MHD

3. OISTRIBUTION/AVAILABILITY OF REPORT

unclassified/unlimited

9. MONITORING ORGANIZATION REPORT NUMBERIS!

7a. NAME OF MONITORING ORGANIZATION

Office of Naval Research (0NR)
7b. AOORCSS I City. Stan and ZIP Cod* l

1107 NE 45th St., Suite 350
Seattle, WA 98105-4631

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F49620-95-1-0126

10. SOURCE OP FUNOING NOS.

PROGRAM
ELEMENT NO.

12-cSr,M?N
nt

LA^OR,sl COMPUTATIONS ON PARALLEL SUPERCOMPUTERS' SHUMLAK, Un

PROJECT
NO.

2304

TASK
NO.

/cs

WORK „NiT
NO

13«. TYPE OF REPORT

final technical report
16. SUPPLEMENTARY NOTATION

13b. TIME COVERED

„»CM 95/2/1 TO 96/3/31
14. OATE OP REPORT lYr.. Mo.. Day)

96/5/31
15. PAGE COUNT u

COSATI COOES

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverie if neceimmry and identify fry Moca number!

18. SUBJECT TERMS (Continue on reuerte if neceuary and identify by bloc* number

implicit algorithm, parallel computer, lower-upper
symmetric-Gauss-Siedel, LUSGS, approximate Riemann
solver, maqnetohvdrodynamic, MHD. Hartn.. nn flow

The primary objective of this project is to develop an advanced algorithm for parallel
supercomputers to model time-dependent magnetohydrodynamics (MHD) in all three dimensions.
This will provide a valuable tool for the design and testing of plasma related technologies that are
important to the Air Force and industry. These applications include nuclear weapons effects
simulations, radiation production for counter proliferation, fusion for power generation, and
advanced plasma thrusters for space propulsion.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED CJ SAME AS RPT iZ OTIC USERS D

22*. NAME OF RESPONSIBLE INDIVIDUAL

Donald W. Allen, Director G&C Services

DD FORM 1473, 83 APR

21. ABSTRACT SECURITY CLASSIFICATION

unclassified /unlimited
22b. TELEPHONE NUMBER

(Include Area Code)

206 543-4043

22c OFFICE SYMBOL

5754
EDITION OF 1 jAN 73 IS OBSOLETE. unclassified/unlimited

SECURITY CLASSIFICATION CF T«,s !>AC

Development of an Advanced Implicit Algorithm for
MHD Computations on Parallel Supercomputers

Contract Number: F49620-95-1-0126

U. Shumlak
Department of Aeronautics and Astronautics, Box 352250

University of Washington, Seattle, WA 98195-2250

Contents

1 Executive Summary 1

2 Project Description 1
2.1 Research Objectives . 2
2.2 Technical Description . 2

2.2.1 MHD Plasma Model 2
2.2.2 Algorithm Overview 3
2.2.3 LU-SGS Relaxation Scheme 7
2.2.4 Approximate Riemann Solver 8
2.2.5 Parabolic MHD Terms 9

3 Benchmarks and Applications 11
3.1 Ideal MHD Test Problems 11

3.1.1 One-Dimensional Coplanar MHD Riemann Problem . 11
3.1.2 Oblique Shock 14

3.2 Viscous and Resistive MHD Test Problems 17
3.2.1 Laminar Flow 18
3.2.2 Resistive Diffusion 19
3.2.3 Hartmann Flow 20

3.3 MPD Plasma Thruster 24
3.4 Magnetic Reconnection 29

3.4.1 Problem Description 29
3.4.2 Linear Analysis 30
3.4.3 Non Linear Analysis 33

3.5 HIT Injector . 33

4 Parallel Computer Implementation 36
4.1 Fine-Grain Parallelization 36
4.2 Coarse-Grain Parallelization 38

4.2.1 Domain Decomposition 39
4.2.2 Implementation of the Patch Decomposition 40
4.2.3 Message Passing 41
4.2.4 Load Balancing 41
4.2.5 Results 42

Professional Interactions 44
5.1 Project Personnel 44
5.2 Collaborations 45

5.2.1 Air Force Phillips Laboratory 45
5.2.2 Lawrence Livermore National Laboratory 46
5.2.3 University of Michigan 46
5.2.4 University of Colorado 46
5.2.5 University of Washington 46

5.3 Publications 46
5.4 Presentations 46

Conclusions 47

in

List of Figures

1 Positioning for (a) vertex-centered and (b) face-centered parabolic
fluxes. The face-centered fluxes produced more accurate and
stable solutions 10

2 Numerical solution of coplanar Riemann problem. Density
profile is shown initially and after solution has evolved for
400 time steps 12

3 Numerical solution of coplanar Riemann problem. Transverse
magnetic field profile is shown initially and after solution has
evolved for 400 time steps 13

4 Comparison of numerical and exact solution of coplanar Rie-
mann problem for Bx = 0 case 15

5 Geometry of oblique shock test problem 16
6 Density contours and field lines for an ill = 3 flow impinging

on a perfectly conducting plate at an angle of 25 degrees. . . 16
7 Logarithm of the two-norm of the energy equation residual

plotted as a function of iteration number for explicit and im-
plicit solutions of channel flow with horizontal velocity and
vertical magnetic field imposed at the left boundary 17

8 Simulation of laminar flow between parallel plates in the pre-
sence of a constant pressure gradient. The velocity profile is
parabolic as expected from the analytical solution 19

9 The Hartmann flow geometry showing the moving parallel
plates and the cross magnetic field. 20

10 Hartmann flo' simulation with // = 104. Flow velocity vec-
tors and magnetic field lines are shown. The velocity of the
flow is zero everywhere except at the plates. The magnetic
field lines have a constant slope through the domain 22

11 Hartmann flow simulation with // =0.1. Flow velocity vec-
tors and magnetic field lines are shown. The velocity profile is
linear and the magnetic field lines have an "S" shape caused
by the bulk .fluid flow 23

12 Hartmann flow simulation with H = 10. Flow velocity vectors
and magnetic field lines are shown. The flow velocity only
exists close to the plates. The magnetic field lines are linear
around the midplane 24

13 Geometry of the two-dimensional MPD thruster 25

IV

14 Plasma velocity as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) sim-
ulation. 26

15 Magnetic field as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) sim-
ulation 27

16 Velocity vectors for the MPD thruster. The plasma is accel-
erated down the gun by the I X B force and a boundary layer
develops. The internal blocks illustrate the decomposition of
the domain used for the validation of the parallel version of
the code 28

17 Magnetic field (Bz) contours for the MPD thruster. The gra-
dient in the magnetic field produces the force applied to the
plasma. 28

18 Schematic of planar sheet pinch problem [from H. P. Furth,
Phys. Fluids 28(6), 1595 (1985)] 30

19 Equilibrium profiles of normalized magnetic field and resistivity. 31
20 The eigenfunctions for Lu = 103 and a = 0.5 32
21 The linear and non-linear evolution of the reconnected flux. . 32
22 Flux contours of the developed non-linear instability 33
23 Schematic of the HIT plasma experiment 34
24 Results of two-dimensional simulation of HIT injector. Plot

shows density contours and poloidal magnetic field lines. ... 35
25 The 20 X 20 lower (a) and upper (b) tridiagonal block matrices

for the LU-SGS algorithm with a grid of 4 x 5 cells 36
~") The parallel speedup for a problem with constant siz«. grid

using a fine-grain parallelization approach 37
27 (a) Strip decomposition and (b) patch decomposition of a 2-D

domain 39
28 Column decomposition of a 3-D domain is an immediate ex-

tension of the patch decomposition of 2-D domains 40
29 Fixed grid (400 X 80) speedup results. Note the superlinear

speedup of the explicit mode 42
30 Scaled grid (50 X 10 per processor) speedup results 45

1 Executive Summary

The primary objective of this project is to develop an advanced algorithm
for parallel supercomputers to model time-dependent magnetohydrodynam-
ics (MHD) in all three dimensions. This will provide a valuable tool for
the design and testing of plasma related technologies that are important to
the Air Force and industry. Implementing the algorithm on parallel super-
computers will allow the detailed modeling of realistic plasmas in complex
three-dimensional geometries.

We have developed a time-dependent, two-dimensional, arbitrary-geometry
version of the algorithm, placed it into a testbed code, added the modifica-
tions necessary for viscous and resistive effects, and tested the code against
known analytical problems. We have implemented the algorithm on a paral-
lel architecture and investigated parallelization strategies. Future plans in-
clude installing the algorithm into MACH2, optimizing the parallelization,
extending the code to three dimensions, installing the three dimensional
algorithm into MACH3,1 and calibrating the code with experimental data.

As a result of this project several professional collaborations now exist
between the Department of Aeronautics and Astronautics at the University
of Washington and the Air Force Phillips Laboratory, Lawrence Livermore
National Laboratory, the University of Michigan, the University of Colorado,
and other departments at the University of Washington. The work from this
project has been presented at international conferences and one publication
has already been published in a refereed journal and another publication
has been accepted for publication pending revisions.

2 Project Description

Plasmas are essential to many technologies that are important to the Air
Force, some of which have dual-use potential. These applications include
nuclear weapons effects simulations, radiation production for counter pro-
liferation, fusion for power generation, and advanced plasma thrusters for
space propulsion. In general, plasmas fall into a density regime where they
exhibit both collective (fluid) behavior and individual (particle) behavior.
Many plasmas of interest can be modeled by treating the plasma like a con-
ducting fluid and assigning macroscopic parameters that accurately describe
its particle-like interactions. The magnetohydrodynamic (MHD) model is a
plasma model of this type.

2.1 Research Objectives

The objectives of the project are to:

• Develop a coupled, implicit, time-accurate algorithm for three-dimensional,
viscous, resistive MHD simulations;

• Incorporate the algorithm into the MACH3 code, which was developed
at the Air Force Phillips Laboratory;

• Validate the code with analytical and experimental data; and

• Apply the code to analyze plasma experiments at the University of
Washington [Helicity Injected Tokamak (HIT)2] and at the Phillips
Laboratory [the liner implosion system (WFX),3 the dense plasma
focus experiment, and magnetic flux compression generators].

2.2 Technical Description

2.2.1 MHD Plasma Model

The three-dimensional, viscous, resistive MHD plasma model is a set of
mixed hyperbolic and parabolic equations. The Navier-Stokes equations are
also of this type. This project applies some advances that have been made in
implicit algorithms for the Navier-Stokes equations to the MHD equations.
These implicit algorithms solve the equation set in a fully coupled manner,
which generates better accuracy than the current methods used for MHD
simulations.

v. "ien expressed in conservative, non-dimensional form, the M.'D model
is described by the following equation set.

d_
dt

P
pv
B

. e

+ V

pv
pvv - BB + (p + B • B/2) I

vB-Bv
. (e + p+B-B/2)v-(B-v)B

0
-i r

(RmAiy1 Ü(fj,B)
{ReAiy1 2

L (RcAiy1 v • f - {RmAl)~x f-(VxB)xB + f (PeAl)'1 k-VT \

(1)

The variables are density (p), velocity (v), magnetic induction (B), pressure
(p), energy density (e),'and temperature (T). S(T?, B) is the transverse

resistive electric field tensor which is described in Section 2.2.5. A/,- is the
ion mass. The energy density is

V v-v BB !
e =

7-1 + P 2 + 2 (2)

where 7 = cp/cv is the ratio of the specific heat s. The non-dimensional
tensors are the stress tensor (r), th e electrical resisti vity (?7), and the thermal
conductivity (k), and I is the identity matrix. The non-dimensional numbers
are defined as follows:

Alfven Number : Al = VA/V
Reynolds Number : Re = LVjv

(3)
Magnetic Reynolds Number : Rm = HoLV/i]
Peclet Number : Pe = LV/K

The characteristic variables are length (L), velocity (V), Alfven speed (V'4 =
B/\jfi0p), kinematic viscosity {v), electrical resistivity (7/), and thermal dif-
fusivity (K = k/pcp). fi0 is the permeability of free space (47T X 10-7).

For convenience, the MHD equation set [eqn(l)] is rewritten in the fol-
lowing compact form

dQ

dt
+ v-r^ = v-fp, (4)

where Q is the vector of conservative variables, Th is the tensor of hyperbolic
fluxes, and Tv is the tensor of parabolic fluxes. The forms of these vectors
and tensors can be seen from eqn(l). The hyperbolic fluxes are associated
with wave-like motion, and he parabolic fluxes are associated with diffusion-
like motion.

2.2.2 Algorithm Overview

Because of the natural differences between hyperbolic and parabolic equa-
tions, the methods for solving them are very different. Since the MHD
equations are of mixed type the hyperbolic and parabolic terms must be
handled differently. The hyperbolic fluxes are differenced by applying an
implicit, approximate Riemann algorithm that properly accounts for their
wave-like behavior. The parabolic terms are discretized by applying explicit
central differencing.

The design of the overall algorithm is primarily driven by the numerical
techniques that must be used to discretize the hyperbolic terms. Therefore,

we begin by considering the ideal MHD equations, which are obtained from
eqn(4) by setting all the parabolic terms (Tp) to zero.

In one dimension they are

W,d£=dQ dQ
dt + dx dt + dx

o, (5)

where F is the flux vector in the x direction (i.e. Th = (F,G, H)) and A is
its Jacobian.

-I
Here, Q is the vector of conserved variables:

Q = (P, pvx, pvy, pvz, By, Bz,e)T . (7)

This is a set of hyperbolic equations and thus A has a complete set of real
eigenvalues given by

A = (vx, Vx ± Vfast, vx ± Vsiow, vx ± VAx)
T , (8)

where Vjast and Vsiow are the fast and slow magnetosonic speeds, and VAX

is the Alfven speed based on the x component of the magnetic field. These
can be expressed as

V2 Vfast

V. 2
slow

«2+ K? +>/(<* +K?)2- - ^IVL (9)

«2

-4WL (10)

(11)
Pop

Here, cs is the ion sound speed, which for a perfect gas is

c2 =
IP
P '

(12)

Information propagates along characteristics which travel at wave speeds
given by the eigenvalues. Most modern numerical techniques for solving
hyperbolic equations are based upon the idea of splitting the fluxes into
components due to left and right running waves. Then each part of the flux
can be differenced in an upwind manner, which greatly reduces numerical
oscillations and stabilizes the solutions.

It is well known that if a hyperbolic equation is solved with an explicit
scheme, then the allowable time step to maintain numerical stability is given
by the CFL (Courant-Friedrichs-Lewy) condition, which in the case of the
ID MHD equations is

At<7-^17 ■• (13) K + Vjast\

For the high magnetic fields and low densities common in many plasma
experiments, the fast magnetosonic speed is quite high, and thus the time
step is prohibitively small. We are often interested in only modeling the
physics that occurs slower than Alfven time scales. For example, it can be
shown that resistive tearing modes, which are important in studying fusion
plasmas, evolve on a time scale that is given by4

Ttearing « T^T^ = (Luf5 TA. (14)

TA is the Alfven time, TV is the resistive diffusion time, and Lu is the
Lundquist number, which is given by

Lu = ^- - RmAl. (15)

If Lu is 106, which is typical for laboratory plasmas in fusion applications,
the resistive tearing time is approximately 4000 times larger than the Alfven
time. By treating the hyperbolic fluxes implicitly in time, the stability
restriction on the time step is removed, and the solution can be advanced at
the larger resistive tearing time step. This is our motivation for proposing
an implicit scheme.

The starting point for deriving the algorithm is the two-dimensional ideal
MHD equations in Cartesian form

dQ dF ÖG n

We then discretize eqn(16) using first order Euler time differencing to get

A?
= -ßu(Q'l+1) = -fi^1 (17)

where R is

Rij - ^i+l/2.j - ^.-l/2,i + G'i,j+1/2 - G'iJ-l/2- (18)

Note that in this equation and all that follow the grid metric terms (cell
areas and volumes) are omitted for clarity. We linearize R as follows:

Ä?1«Äs-+(H)y(^i-^-) (19)

Substituting this expression back into eqn(17) and rearranging, we get

j_ fdR
At + \dQ

*3.

AQ?j = -R?j. ' (20)

Here AQ is defined as
AQ" = Q?/1 - Q?-. (21)

The left hand side of the eqn(20) is an implicit operator operating on AQ.
It is a large banded block matrix. In three dimensions, it is an (Imax X
Jmax x Kmax) by (Imax x Jmax x Kmax) matrix, where Imax is the number of
cells in the x direction, etc. It is quite costly to invert a matrix of this size
directly. We choose to invert it using an approximate factorization, which
can be done more efficiently. When solved this way, eqn(20) is no longer
time accurate. However, we can still achieve time accuracy with this type
of scheme by adding the time derivative of Q as a source term to the right
hand side of the equation. We then have

9-^)n+l = -Rtl~SitX (22)

where

sir = ^b (3^+1 - 4Q>>+Q^x) * W (23)

The T in eqn(22) can be thought of as a pseudo time variable. At each
physical time step, eqn(22) is solved iteratively in pseudo time until the left
hand side vanishes. When the solution converges, our original equation

% - -* <*>

is solved. This technique is known as dual time-stepping.5 Note that in
eqn(23) a more accurate time derivative can be used at the expense of the
additional memory needed to store the Q vectors from previous time steps.

One advantage of the strategy outlined above is that the implicit op-
erator and the right hand side in eqn(20) are decoupled. The structure

of the matrix no longer depends on the details of the discretization of the
right hand side fluxes. In the following sections we will describe the relax-
ation scheme that is used to iteratively invert the implicit operator and the
approximate Riemann solver that is used to form the right hand side fluxes.

2.2.3 LU-SGS Relaxation Scheme

We use the lower-upper symmetric-Gauss-Seidel (LU-SGS) method to itera-
tively invert the implicit operator.6 To derive this method, we first consider
the following first order accurate flux-vector splitting of R (at time level
n + 1) in eqn(17):

Rii = f*- ftij + *£ij - ^ + Gtj ~ Gtj-x + G~J+l - G-3 (25)

where F+ is the portion of the F flux vector corresponding to right-running
waves, and F~ is the portion corresponding to left-running waves, and G+

and G~ are similarly defined. This equation is linearized to obtain

{I + At (A± - A+_ltj + AT+hj -A-J + B±- £+_, + B~:+l - Z^)}

x AQ£- = -AtR.%

where A+ is the Jacobian of F+, and so on. We approximate these Jacobians
as

A+ = -(A + PA) (27)

*- = \{A-PA) (28)

where pA is the maximum eigenvalue (spectral radius) of A. If we then
iteratively solve this simplified implicit operator using a forward Gauss-
Seidel sweep followed by a backward sweep, the resulting algorithm can be
written as

{l + At[(pA + pB)l-AtUj-Bt^x}}
x {l + At[(pA + PB)nA-+^ + B-:+l}} (29)

xAQ^ = -{l + At(pA+pB))AtR^

The forward sweep is equivalent to inverting a lower block diagonal matrix
[the first braced term in eqn(29)], and the backward sweep is equivalent to
inverting an upper block diagonal matrix [second braced term in eqn(29)].

This structure leads naturally to several vectorization and parallelization
strategies.

If we sweep through the computational domain along lines of constant
i + j (in 2-D), each term along these lines is independent of the others and
depends only on data that has already been updated during the current
sweep. This type of fine grain parallelization is ideal for vector computers.
However, that degree of parallelism is not efficient for parallel computers
because the extra communication time between processors exchanging data
more than offsets the gain in computational efficiency. To optimize this
algorithm for a parallel architecture, we need to break up the computational
domain into blocks and send each block to a different processor. At the
boundaries between the blocks, we reduce the data dependency between the
blocks by using data from the previous time step along the block boundaries.
This effectively reduces those points into a Jacobi iteration. However, the
interior points are still solved with a Gauss-Seidel iteration. As long as
the blocks are large enough that there are many more interior points than
boundary points, then the overall convergence rate is approximately the
same as Gauss-Seidel.

2.2.4 Approximate Riemann Solver

The fluxes on the right hand side of eqn(20) are discretized using a Roe-type
approximate Riemann solver.7 In this method the overall solution is built
upon the solutions to the Riemann problem defined by the discontinuous
jump in the solution between each pair of cells. The numerical flux for a
first-orde accurate (in space) Roe-type solver is written in symmetrk form
as

*i+i/2 = \ {Fi+i + Fi) - ± £/fc (Qj+1 - Qi) |Afc| rk (30)

where rk is the kth right eigenvector, A^ is the absolute value of the kth

eigenvalue, and lk is the kth left eigenvector. The values at the cell interface
(i+1/2) are obtained by a simple average of the neighboring cells. These first
order accurate upwind fluxes are used in the vicinity of sharp discontinuities
in order to suppress oscillations in the solution. We achieve a globally second
order accurate solution by using a flux limiter that modifies the first order
flux so that it uses second order central differencing in smooth portions of
the flow. We are using a minmod limiter.8

Once the eigenvalues and eigenvectors are obtained and properly nor-
malized to avoid singularities, it is relatively straight-forward to apply this

scheine to the one-dimensional ideal MHD equations.9,10 Unlike for the Eu-
ler equations, the extension to more than one dimension is non-trivial. The
reason is that in more than one dimension, the Q vector must include Bx in
addition to the other magnetic field components. (For the one-dimensional
case Bx is constant by virtue of V ■ B =0). Since the j x B force acts
perpendicularly to the directions of j and B, the F flux vector has a zero
term corresponding to Bx. Thus, the Jacobian matrix of F is singular and
has a zero eigenvalue. This means we no longer have a complete set Of phys-
ically meaningful eigenvectors. Physically, we expect information to travel
either at the fluid velocity or at the fluid velocity plus or minus the wave
speeds. Simply dropping Bx from the equation set is not a viable option,
because Bx needs to change in order to maintain V • B = 0. Powell et al.,
recently solved this problem by modifying the Jacobian in such a way as to
change the zero eigenvalue to vx (keeping the others unchanged), and then
adding in a source term that exactly cancelled out the terms introduced by
the modified Jacobian.11

The source term is

^div —

P
B
v

v-B

V-B (31)

It is proportional to the divergence of B and thus very small.

2.2.5 Parabolic MHD Terms

To this point we have only considered the hyperbolic terms. When finite
viscousity and resistivity are included, the parabolic terms of the MHD
equations [right hand side of eqn(l)] become important. For reasonably large
values of Re and Rm (easily in the range of interest for most applications),
the parabolic terms can be differenced explicitly without constraining the
allowable time step. In this work we difference the parabolic terms explicitly
in time with central differences in space. They are added to the right hand
side fluxes arising from the approximate Riemann solver.

During the past year, we have spent a concerted effort on the parabolic
terms to achieve accurate and stable calculations. Originally we used the
same flux centering scheme that is used in MACH3 where the fluxes are
calculated at the cell vertices and a divergence law is applied around the
cell center. See Figure 1(a). A detailed stability analysis demonstrates the

I Grid

(a) (b)

Figure 1: Positioning for (a) vertex-centered and (b) face-centered parabolic
fluxes. The face-centered fluxes produced more accurate and stable solu-
tions.

potential for grid decoupling and a resulting odd-even instability. [This re-
sult has important implications to all ALE (arbitrary Lagrangian-Eulerian)
codes and will soon be submitted to a journal.] Locating the parabolic
fluxes at the cell faces which corresponds to the location of the hyperbolic
fluxes produced solutions that converged faster and were more accurate than
locating the parabolic fluxes at the cell vertices. See Figure 1(b).

We also point out that the resistive electric field term in eqn(l) is differ-
ent than the one commonly used and presented last year V-^-VB which d->es
not hold for spatially dependent anisotropic resistivity. Plasma resistivity
is a strong function of temperature and of the orientation to the magnetic
field. Therefore, the assumption of spatially constant isotropic resistivity is
incorrect. The new term reduces from the conservative formulation of the
more general equation.

/dVV x (77• V x B) = idS x (77• V x B) = /dW • § = fdS-S (32)

where the transverse resistive electric field tensor is defined as

0
Vz(dyBx - dxBy)
T}y{dzBx -dxBz)

Vz (dxBy - dyBx) % (dxBz - dzBx)
0 Vx(dyBz-dzBy)

T)x{dzBy-dyBz) 0
(33)

The dimensionless numbers have been removed for clarity.

10

3 Benchmarks and Applications

3.1 Ideal MHD Test Problems

3.1.1 One-Dimensional Coplanar MHD Riemann Problem

This test problem served to validate the approximate Riemann solver, be-
cause the computed solution could be checked against the exact analytical
solution. For the one-dimensional ideal MHD equations (variations in x
only), the equation for Bx reduces to Bx is constant and drops from the
equation set, eliminating the zero eigenvalue in this case. The coplanar MHD
equations are obtained from the full one-dimensional ideal MHD equations
by setting Bz and vz to zero, thus allowing only planar flow and fields. This
eliminates the vx ± VAX eigenvalues, leaving a system of five equations with
five eigenvalues. Mathematically, the Riemann problem is an initial bound-
ary value problem in which there is initially a discontinuity in the data such
that the left half of the domain is at one state and the right half of the
domain is at another state. As the solution evolves in time, shock waves
and rarefaction waves form and travel at speeds related to the wave speeds
of the system. Although not physically realizable in plasmas, this problem
is analogous to a shock tube in hydrodynamics.

For the full five-wave case, there is not a closed form analytical solution.
Instead, the solution must be checked by calculating generalized Riemann
invariants across the rarefaction waves and Rankine-Hugoniot jump condi-
tions across the shock waves. Since this has already been done by Brio and
Wu9 for a specific set of conditions, for our test case we used the same ini-
tial conditions as they used in or.:T to allow direct comparison with their
published solution. The initial left state was p = 1, p = 1, and By = 1. The
initial right state was p = 0.1, p = 0.125, and By = -1. The velocities were
zero and Bx was 0.75. Figure 2 shows the initial density distribution and
its numerical solution after 400 time steps on an 800 point grid with a CFL
number of 0.8. Figure 3 is the corresponding plot of the transverse magnetic
field (By). The solution was computed using explicit time-stepping. The so-
lution clearly shows five waves formed corresponding to the five eigenvalues.
They are a fast rarefaction wave, a slow shock, a contact surface moving to
the right, a slow compound wave (rarefaction and shock), and a fast rar-
efaction wave moving to the left. Note that the numerical method is able
to resolve the shocks over a few grid points without introducing numerical
oscillations. This is one of the advantages of the flux splitting approach
we have used. The computed solution overlaid exactly on Brio and Wu's

11

Initial State

OS

0.8

0.7 : .
>< 0.8

'55 c
CD 0.5

T3
0.4

0.3

02

0.1

i i

0.2 0.4 0.6 0.8

x

Solution after 400 time steps

0.« \
0.8 \ i\
0.7 VJV—

>^ 0.« A
ff) i
C O.S i
CD i

T3 i
«..4

■ \

0.3 \
0.2

O.t

i . i i ... i

02 0.4 0.8 0.8

X

Figure 2: Numerical solution of coplanar Riemann problem. Density profile
is shown initially / and after solution has evolved for 400 time steps.

12

Initial State

CO o.o

CD o.o

Solution after 400 time steps

04 0.6

X

Figure 3: Numerical solution of coplanar Riemann problem. Transverse
magnetic field profile is shown initially and after solution has evolved for
400 time steps.

13

published solution.
If we set Bx = 0 above, then the problem reduces to a hydrodynamic

shock tube problem if one replaces the thermodynamic pressure by the sum
of the thermodynamic and magnetic pressures. For this case one can find a
closed form exact solution to compare to the calculated solution. Figure 4
shows both the calculated and the exact solution for p + B2 /2 after 80 time
steps on a 100 point grid. There is very good agreement with the plateau
values and the shock is resolved in a few cells without numerical oscillations.

3.1.2 Oblique Shock

This steady-state problem served primarily as a test of the LU-SGS implicit
relaxation scheme. It also allowed us to examine the divergence of B at each
point to ensure that the the zero eigenvalue fix was correctly implemented.

The geometry for these tests is shown in Figure 5. A super-Alfvenic flow
(Mach number of 3) impinges on a perfectly conducting plate at an angle
of 25 degrees. In addition, a vertical field of By = 0.2 is imposed at the
left boundary. Since the plate is perfectly conducting, the component of the
magnetic field normal to the plate is held at zero.

Figure 6 shows the steady-state solution of this problem. Contours of
density and magnetic field lines are plotted. The density contours show
that an oblique shock forms, as expected. Outside of the shock, the field
is convected in from the boundary. At the shock, the field lines bend due
to the change in direction of the flow at the shock. Finally, the field lines
bend at the conducting wall as all the field is converted to Bx to satisfy the
boundary condif->n while keeping the divergence of B equal to zero. We
verified that the divergence was less than 10~14 throughout the domain.

This two-dimensional steady-state solution was obtained with explicit
time stepping at a CFL number of 0.8 and with the LU-SGS implicit relax-
ation scheme at an infinite CFL number (approximate Newton iteration).
Figure 7 is a plot of the logarithm of the two-norm of the residual of the en-
ergy equation as a function of the number of iterations. The implicit scheme
converged to 10~14 in about 150 iterations, whereas the explicit scheme re-
quired about 700 iterations. This is an acceleration factor of about 4.5 for
the implicit scheme. Higher acceleration factors can be achieved for finer
grids.

14

Initial State
1.5

1.4

' 1.3

1.2

CM
c?- 1.1
00
+ 1.0

0_
0.9

0.8

0.7

0.6

 I i i i_i L
0.8 1.0

Solution after 80 time steps
1.5

1.4

1.3

1.2 ZI-,

CO
+ 1.0

Q.
0.9

0.8

0.7

0.6

calculated
exact

0.5 I i i i

Figure 4: Comparison of numerical and exact solution of coplanar Riemann
problem for Bx = 0 case.

15

conducting wall, By = 0

Figure 5: Geometry of oblique shock test problem.

Figure 6: Density contours and field lines for an M = 3 flow impinging on
a perfectly conducting plate at an angle of 25 degrees.

16

CO
3

CD
O

„ v. X

5 - 1

limplicit \explictt

0 - \ \

s • i . . . 1 1

.v_
300 400

iterations

Figure 7: Logarithm of the two-norm of the energy equation residual plotted
as a function of iteration number for explicit and implicit solutions of channel
flow with horizontal velocity and vertical magnetic field imposed at the left
boundary.

3.2 Viscous and Resistive MHD Test Problems

The viscous and resistive terms in the MHD equations comprise the right
hand side of the equality in eqn(l). The addition of these terms to the
algorithm involved the modification of the R vector in eqn(20).

- R •Ä + V-T, (34)

The R vector is updated with each iteration to produce a solution that is
fully coupled.

Using the divergence form of the parabolic terms reduces the differencing
errors of the method. To preserve the accuracy on irregular meshes the
derivatives are computed using a finite volume method.

The validation of the parabolic terms consisted of applying the code to
a suite of test problems with known analytical solutions. We validated in-
dependently the terms associated with viscosity and those associated with
resistivity and then the combined effect of all of the terms. The test prob-
lems were: (1) fully developed laminar flow between two parallel plates, (2)
magnetic field generated by a constant current density, and (3) Hartmann

17

flow. AD of these test problems were run until a steady-state solution devel-
oped. The capability of the code to capture time-dependent physical effects
was also tested by modeling the exponential resistive decay of the magnetic
field generated in test problem 2.

3.2.1 Laminar Flow

We benchmarked the code to two types of laminar flows between infinite par-
allel plates. The plates restrict the steady-state flow to be one-dimensional.
No magnetic fields are present. This reduces the MHD equations to the
Navier-Stokes equations. In these simulations a no-slip boundary condition
was applied to the fluid in contact with the plates.

The first type of flow to which we benchmarked was viscous flow gen-
erated by one plate moving relative to the other plate. With no pressure
gradient, constant viscosity, and incompressible flow, the equations reduce
to

(Re)-} V-f = (Re)-1 V2vx = 0 (35)

which is Laplace's equation. For finite viscosity (Re) the analytical solution
for the flow velocity is

vx(y) = V0 (V- |) + KL| (36)

where Vo is the velocity of the plate at y = 0 and VL is the velocity of the
plate at y = L.

The errors between the analytical solution and the code generated so-
lution were below 10-9 (the two-norm of the Tor between the solutions).
We performed the same simulation with no viscosity (ße —* oo). As would
be expected, the flow velocity vanished everywhere except on the plates.
When the viscous heating was modeled, a transient pressure gradient p(y)
and transverse velocity vy(y) developed which heated the flow and increased
its energy.

The next test was laminar flow between stationary parallel plates with
a constant pressure gradient in the flow direction. The governing equation
is

Vx-(pl) =^ = (Re)-lV2vx. (37)

The solution for this flow is the parabolic equation given by

18

Figure 8: Simulation of laminar flow between parallel plates in the presense
of a constant pressure gradient. The velocity profile is parabolic as expected
from the analytical solution.

Figure 8 shows the solution generated by the code. Again the errors
were reduced to below 10-9.

3.2.2 Resistive Diffusion

We benchmarked the resistive diffusion to a current sheet with a uniform
current density. Values of the tangential magnetic field were specified at
parallel infinite plates, in a similar way as the first of the laminar flow
simulations.

For no flow velocity and constant resistivity the MHD equations reduce
to a Laplace equation similar to eqn(35).

(Am)_1V-VB = 0 (39)

This equation has the same form for its solution as eqn(36).

Bx{y) = B0 (l - |) + ßz,| (40)

where Bo is the velocity of the plate at y = 0 and #/, is the velocity of the
plate at y — L.

The code agreed with the analytical solution to within errors of 10-9.

19

,1

1 1

Bo

- . . ■ - VQ
1 p

Figure 9: The Hartmann flow geometry showing the moving parallel plates
and the cross magnetic field.

The time-dependent resistive decay of a magnetic field can be represented
analytically by solving the one-dimensional transverse magnetic induction
equation with constant resistivity.

dB

dt
(■11

The solution is the exponential decay of the magnetic field with a sinusoidal
profile.

Bj_{t. x) oc exp —
Rm

sin(7rz) 421

for zero field boundary conditions at x = 0 and x = 1.
This simulation was performed beginning v, fh a uniform field profile.

The field decayed into the expected sinusoidal shape and the decay constant
agreed with the analytical result to within 0.01%. The same test was re-
peated on a parabolic clustered grid with Axmax/Axmin = 10. The same
accuracy was achieved.

3.2.3 Hartmann Flow

Hartmann flow combines the effects of viscosity and resistivity. The problem
geometry is the same as that for the laminar flow with the addition of a
magnetic field that is normal to the plates, in the y direction. See Figure 9
for an illustration.

The governing equations for the Hartmann flow can be found by com-
bining the magnetic field and momentum equations from the MHD model.

20

As before there will only be flow in the x direction. However, an applied
electric field in the z direction must be included since it can generate an
E0 X B0 flow in the x direction. The Hartmann flow is described by the
differential equation,

d2vx El
L2 vx +

E0

dy2 L2 Vx ' B0

where the Hartmann number is defined as

= 0,

D r

H = —^= = AlLVReRm.

The analytical solution to the Hartmann flow is

(43)

(44)

_Eo
Bn

smh(H(l-y/L)) smh(Hy/L)
 — + Vi-

1

sinh(tf) ' 'u sinh(i/)

sinh (H(l - y/L)) + smh(Hy/L)

smh(H)
(45)

where the same no-slip boundary conditions have been applied. In the
limit of no magnetic field, the solution reduces to the laminar flow solu-
tion, eqn(36).

The response of the magnetic field can be determined by solving the
magnetic field equation for the field component that will be "dragged" with
the flow. This magnetic field is described by

dBx

dy
-(Rm) (vx + Eo

Bn

Using the flow solution of eqn(45), the solution for Bx is

BX{V)
(Rm\ (VL-Vo

V H
cosh(#/2) - cosh (H(L - 2y)/2L)

sinh(tf/2)

(46)

(47)

The boundary conditions are that Bx vanishes at the plates and the net
current is zero. The first boundary condition may seem arbitrary, but it is
consistent with the no-slip boundary condition applied to the flow solution.
The second boundary condition relates the applied electric field, E0, and the
plate velocities.

Eo VQ+VL

B0 2
(48)

21

Figure 10: Hartmann flow simulation with H = 10''. Flow velocity vectors
and magnetic field lines are shown. The velocity of the flow is zero every-
where except at the plates. The magnetic field lines have a constant slope
through the domain.

Since the MHD equation set does not allow for an applied electric field, V0

is set to —VL, SO that E0 = 0.
We performed simulations for large, small, and intermediate Hartmann

numbers, H.
For a large Hartmann number, the effects of viscosity and resistivity are

small, and the solution approaches that of idea1 MHD. The flow velocity
vanishes everywhere except on the plates, like it does for the inviscid case
(Re —► oo). The magnetic field is frozen into the plates and develops a
slope (constant Bx) as the plates move. The slope of the magnetic field is
determined by the value of H (the field lines slip through the plates due
to resistivity). The slope of the magnetic field lines (B0/Bx) is constant
at HIR.m. Figure 10 shows the results from simulation with H = 104. A
finite value of the flow velocity exists only at the plates. The magnetic field
lines are straight except at the plates where Bx is forced to vanish because
of the boundary conditions. For clarity the slope of the magnetic field has
been normalized to unity at the midplane between the plates for all of the
Hartmann flow simulations.

The limiting case of small Hartmann number is characterized by a flow
that is dominated by viscous effects and a magnetic field that responds to

22

Figure 11: Hartmann flow simulation with H =0.1. Flow velocity vectors
and magnetic field lines are shown. The velocity profile is linear and the
magnetic field lines have an "S" shape caused by the bulk fluid flow.

the bulk fluid flow and the large resistivity. The flow velocity varies linearly
from the velocity of the top plate to the velocity of the bottom plate, as
described by eqn(36). The magnetic field diffuses through the plate and
the bulk fluid, but the fluid drags the field lines along with the flow. This
produces a swayed "S" shape to the field lines with a peak magnetic field
at the midplane. Since the slope of the field lines is inversely proportional
to the magnitude of Bx, the r^ak in the magnetic field corresponds to the
field lines with the minimum slope (most horizontal). The minimum slope
is 4/Am. The simulation results for H = 0.1 are shown in Figure 11. Notice
the linear velocity profile and the swayed magnetic field lines.

Flows with Hartmann numbers in the intermediate ranges have solutions
which exhibit characteristics of both of the limiting cases. The flow velocity
falls to zero away from the boundaries in a scale length of L/H. This
scale length is an appreciable fraction of the domain. The magnetic field is
influenced by the motion of the plates and the fluid flow. The magnetic field
has a swayed shape close to the plates and is linear around the midplane.
Away from the boundaries (L/H < y < L—L/H), the value of Bx is constant
at B0Rm/ H. Figure 12 shows the results from a simulation with H = 10.
The velocity profile falls to zero around the midplane. The magnetic field
lines have a swayed shape like those in Figure 11 but not as dramatic, and

23

Figure 12: Hartmann flow simulation with H = 10. Flow velocity vectors
and magnetic field lines are shown. The flow velocity only exists close to
the plates. The magnetic field lines are linear around the midplane.

they are linear around the midplane.
All of the Hartmann flow simulations converged to the analytical solution

to within errors of 10-6.

3.3 MPD Plasma Thruster

The magnetoplasmadynamic (MPD) thruster is an electric propulsion device
for spacecraft. Electrical propulsion is a technological field that is impor-
tant to the Air Force and industry for satellite station keeping and orbital
maneuvering. This problem demonstrates the dual time-stepping algorithm,
which allows flexible choice of time steps so that fast and slow transients
can be tracked accurately and efficiently. This is also the first problem that
exercises all of the parts of the new algorithm (the approximate Riemann
solver, the LU-SGS relaxation scheme, the resistive and viscous terms, and
the dual time-stepping) simultaneously. The problem geometry is shown
in Figure 13. A current is applied across the left boundary. This current
creates a magnetic field in the z direction that in turn leads to a j x B force
that accelerates the plasma to the right. We expect that the plasma initially
in the domain will be accelerated up to some exit velocity on a fast time
scale related to the Alfven time. However, if there is a finite resistivity in

24

Conducting
plates

Figure 13: Geometry of the two-dimensional MPD thruster.

the plasma, the magnetic field and current at the left boundary will diffuse
into the domain on a slower time scale related to the resistive diffusion time.
Ideally, one would like to take small time steps initially to follow the fast
transient, and then switch to a much larger time step when the system is
evolving more slowly.

If there is no viscosity, then >, .e problem becomes one-dimensional in x,
which is to the right in Figure 13. For this problem we chose a Lundquist
number of 100, a reference magnetic field of 1 Tesla, a reference density
of 10-5 kg/m3, a reference length of 10 cm, and an imposed current of
30 kA. Figure 14 shows the plasma velocity as a function of x at several
different times (normalized to the Alfven time). The top plot shows the
results of an explicit time-differencing simulation with a CFL number of
1. This simulation took 2600 time steps to advance the solution to t —
10.17. Notice that between 3 and 5 Alfven times, the velocity reaches a
constant uniform value along the length of the domain. The bottom plot is
a simulation in which a CFL number of 1 was used until t = 1.5, at which
point the CFL number was increased to 100 and the dual time-stepping
implicit method was used to maintain stability. At each physical time step

25

0.00020

>

0.00000
0.0

Explicit Time Differencing, CFL No. = 1

0.2

t = 1.5

t = 2.63

t = 5.27

t = 7.53

t = 10.17

04 06
x/L

000015

£
3

Pseudo Time Iterations, CFL No. = 100

0.2

t = 1.5

t = 2.63

t = 5.27

t = 7.53

t= 10.17

x/L

Figure 14: Plasma velocity as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) simulation.

26

Explicit Time Differencing, CFL No. = 1

0.000 l

Pseudo Time Iterations, CFL No. = 100

0.000 I

Figure 15: Magnetic field as a function of x and time for explicit time
differencing simulation and dual time-stepping (implicit) simulation.

27

Plasma Gun Simulation - Velocity Vector Plot

Applöd current: la - 30.000
'R^wrvof density: p, - 10
Ud-5
Proc*«or gnd: 4x8

Grid &iz»: 400 x 80

5 3 3 S T — i 2
1 ^

a 2 i s

1 i i 3 1 i 1 i 1 S 1 a ? a ? a
i § IsIsiJiäiä i a i 3
i.±. s 3. 3 . ä. g . ä e . ä =? i J =. 7 ,=. ? .5

Figure 16: Velocity vectors for the MPD thruster. The plasma is accelerated
down the gun by the IxB force and a boundary layer develops. The internal
blocks illustrate the decomposition of the domain used for the validation of
the parallel version of the code.

Plasma Gun Simulation - B, Contour Plot

Appt«d cxrrtnt: I, - 30.000
■R«Mfvt>ir' density: p. - 10
LA).5
Process« gnd: 4 x 8

Gnd sa: 400 x 80

m*
Mi
«M-

M&.;i... .t. ,

Figure 17: Magnetic field (B:) contours for the MPD thruster. The gradient
in the magnetic field produces the force applied to the plasma.

28

it took about 30 pseudo-time steps to converge, so the overall number of
iterations was reduced to 1090 for the dual time-stepping case. The plots
look similar to the explicit time-stepping results, except that the end of
the fast transient is filtered out by taking such large time steps. On the
other hand, Figure 15 shows that the magnetic field, which evolves on the
slower resistive diffusion time scale, is captured equally well by the explicit
and implicit schemes. The development of the plasma velocity and internal
magnetic field can be seen in Figures 16 and 17.

3.4 Magnetic Reconnection

In this application we present results demonstrating agreement between the-
oretical linear growth rates of the resistive instability in a sheet pinch and
our non-linear resistive MHD code. We study resistive instabilities because
they are a likely candidate for driving magnetic relaxation in the Helicity
Injected Tokamak (HIT). The planar sheet pinch is a well understood config-
uration12^15 and provides a good test problem and benchmark for our MHD
code.

We present the linear analysis of the sheet pinch.13'14 The linear equa-
tions are solved numerically to obtain the eigenmodes. The eigenvalues
(growth rates) are compared with the analytical theory.12 We then present
the nonlinear analysis where our implicit MHD code is applied. A pertur-
bation is initialized in the MHD code. The instability resulting from the
perturbation is allowed to develop and finally saturates due to non-linear
effects. The initially linear growth rate agrees with linear analysis.

3.4.1 Problem Description

We study the resistive instability in a planar sheet pinch, the symmetric
tearing mode in a finite-thickness current sheet. See Figure 18 for schematic
representation. For simplicity we examine the mode with the wave vector
parallel to the equilibrium magnetic field.

k || B0 (49)

We define

F = |^-U.h(l) (50)
■t>ref \ß/

where a is the characteristic width of the current sheet. The resistivity of

29

Figure 18: Schematic of planar sheet pinch problem [from H. P. Furth.
Phys. Fluids 28(6), 1595 (1985)].

the current sheet is

±- = cosh2 (V
1 , (51)

which satisfies the equilibrium induction equation with no flow. The resis-
tivity has a minimum in the middle of the current sheet (y = 0), and the
magnetic field vanishes at y = 0 and is positive for y > 0 and negative for
y < 0. See Figure 19 for the equilibrium profiles.

3.4.2 Linear Analysis

For the linear analysis, we begin with the incompressible, resistive MUD
equations. We assume a variation of the perturbations of the form

f = f(y,t)e ikx (52)

The perturbation equations yield a pair of coupled, linear differential equa-
tions.14

1 I TTT - <*''* I - Fw (53)

d_ (d2w
8t [dy2

dt dy*

a2w I = a2 Lu2 '£--• d2F

dy2 * (54)

30

/\ /-""

MJI Y
P7 0.5

■o
c
(0
m ■. y /V
.3

'5
yj 05

-« -2 b 2

/ y/a
4 -

Figure 19: Equilibrium profiles of normalized magnetic field and resistivity.

where Lu is the Lundquist number and

Bo

w = —ikrrvx\

a = ka

Tr — LUTA

(55)

(56)

(57)

(58)

This coupled pair of PDE's are solved numerically using an implicit finite
difference formulation. The eigenfunctions for Lu = 103 and a — 0.5 are
shown in Figure 20. The growth rates have also been found analytically.12

For the pure symmetric tearing mode the growth rate is given by

LuV?5

7 = 0.954(1- a2)4/5 (^) (59)

For values of Lu greater than 500, the numerically calculated and analytical
linear growth rates agree to within a few percent.

31

V

w

Figure 20: The eigenfunctions for Lu = 103 and a = 0.5.

«
0,1 Linear.«*

0.09 #*
X #* MII|II
3 *'^^^~'

LL jp0"^ Nonlinear
<D
O
<D
C
c
R °07
<D

CC
t^T ^^f

0.06

** — ' t „ ■ ■■... i ■ . ^--.«

Time

Figure 21: The linear and non-linear evolution of the reconnected flux.

32

«ji'Mi'Miii'iMM ■^ttHH+HM'

vs5&w£»i8««N««SS?*8^^

x/a

Figure 22: Flux contours of the developed non-linear instability.

3.4.3 Non-Linear Analysis

A planar current sheet is initialized in the code, and a perturbation of
the same form as the linear eigenfunction is superimposed. The growth rate
is determined from the amount of reconnected flux at y = 0. The evolution
of the non-linear perturbation is shown in Figure 21. The result from the
linear analysis is also shown. The non-linear growth matches the linear
prediction during early development , " the instability, but during late time
the instability saturates due to non-linear effects. Magnetic flux contours
are shown in Figure 22 which show the magnetic island formation of the
non-linear instability.

3.5 HIT Injector

One of the first applications for the new code will be to simulate the
HIT experiment. The experiment is shown schematically in Figure 23. The
geometry is toroidal, but only a single slice in the poloidal plane is pictured.
HIT is a low aspect ratio tokamak that uses helicity injection to produce
toroidal current. Gas is puffed into the injector and then a series of capacitor
banks are discharged across the electrodes to form the plasma and interact
with the applied magnetic fields to push the plasma into the confinement

33

C.L

Absorber

Figure 23: Schematic of the HIT plasma experiment.

34

density

>

Figure 24: Results of two-dimensional simulation of HIT injector,
shows density contours and poloidal magnetic field lines.

Plot

region, where the tokamak plasma is formed. The full simulation will require
three-dimensional, multiblock capability, which the code does not yet have.
However, the injector portion of the experiment can be modeled as a single
block.

For the first simulation we made the further simplification of solving
the two-dimensional problem rather thr.n the true cylindrical problem. We
chose an initial poloidal bias field that is uniform throughout the injector
with By = 0.001T and Bx = 0, where the x direction is up (toward the con-
finement region) in Figure 23. The initial toroidal (out of plane) field was
zero in this case, and a current of 30kA was applied across the electrodes
(at the bottom boundary in Figure 23). Plasma was placed at the bottom
boundary with a density ten times higher than the initial background den-
sity. The Lundquist number was 1000. A grid with 44 cells in the x direction
and 12 points in the y direction was used.

The results of the simulation after ten Alfven times are shown in Figure
24. Contours of density and the in-plane magnetic field lines are plotted.
The current at the left boundary (x = 0) induces out-of-plane magnetic field
that results in a j x B force that brings in plasma from the left and pushes
the plasma to the right (in the x direction) towards the confinement region.

35

Figure 25: The 20 X 20 lower (a) and upper (b) tridiagonal block matrices
for the LU-SGS algorithm with a grid of 4 x 5 cells.

The contours of density show the higher density plasma being carried into
the domain. In addition, the initially straight field lines are stretched as
the plasma flows across them. However, the density contours do not overlay
with the field lines as they would in the limit of zero resistivity. This is
consistent with the relatively low Lundquist number for this simulation.

4 Parallel Computer Implementation

We have begun to investigate strategies for implementing the algorithm on
p, rallel architectures. The first of the following sections des ibes our first
and the simplest approach, which was to parallelize the LU-SGS algorithm
in a point-wise manner. This proved to be too fine-grained to be efficient, so
we have since opted for a domain decomposition approach which is described
in the second section. The third section describes the implementation of this
method on the MHD solver.

4.1 Fine-Grain Parallelization

The LU-SGS algorithm involves a double sweep of the computational
domain. The forward (predictor) sweep solves a lower tridiagonal block ma-
trix for the entire computational domain. The backward (corrector) sweep
solves an upper tridiagonal block matrix. Figure 25 shows the form of the
lower and upper block diagonal matrices for the case of a 4 x 5 grid. Because

36

Figure 26: The parallel speedup for a problem with constant size grid using
a fine-grain parallelization approach.

of the lower-upper form of the matrices, the solutions at grid cells along a
line of constant i + j are independent.

The simplest parallel implementation is to decompose the domain into
its component cells, distribute the grid cells over the processors of the par-
allel computer, and treat each cell as residing on a different processor. This
approach exploits the independence of the solutions of the cells on lines of
constant i+j. Communication between the cells provides the necessary syn-
chronization. For these tests, we used the Parallel Virtual Machine (PVM)
communication library which was developed at Oak Ridge National Labora-
tory.16 PVM allowed us to connect a network of four DEC Alpha workstation
and use them as our parallel computer.

To determine the parallel effectiveness, we measured the speedup ob-
tained when a problem grid of constant size was evenly distributed onto an
increasing number of processors. Speedup is defined as the time required to
find the solution with n processors divided by the time with one processor.
For perfectly parallel implementations, the speedup would be equal to the
number of processors. Any communication time and processor synchroniza-
tion decreases the speedup.

We used a 4 x 4 grid and varied the number of processors from one

37

to four. While this was a small size problem, it was sufficient to test the
parallel implementation. The speedup results are shown in Figure 26. Some
speedup can be seen; however, the amount is unsatisfactory.

The low efficiencies indicate that the simplest approach for parallel im-
plementation of the LU-SGS algorithm is inadequate. The results are not
surprising since the grain of parallelization in this approach is too fine and
requires excessive communication. The number of grid cells in practical
applications will be much greater than the number of processors. This sug-
gests dividing the domain into a number of large blocks, so that the grid
cells within a block are located on the same processor (and memory) and
do not need to communicate through message passing.

4.2 Coarse-Grain Parallelization

In this section, we describe the coarse-grain parallelization of the MHD
solver and the performance of this approach applied to a real problem.

The algorithm was parallelized using the domain decomposition tech-
nique (DDT). This technique is based on the simple idea of "divide and
conquer" The integral form of a general conservation law is

2-JdVQ + fdS-F(Q) = JdVS(Q), (60)
n E n

where Cl is the domain and E is the boundary of fi. Q is the vector of
conserved variables, F(Q) is the flux of the conserved variables, and S(Q)
is the vector of source terms. By splitting the domain fi into p subdomains
such that

n=Un-' <61)
one can replace eqn(60) with a set of p conservation equations applied on
the subdomains £},-.

d_
dt
^ [dV Q + IdS ■ F(Q) = f dV S(Q), i = l,2,...,p (62)

n. s. n,

Each of these discretized equations is solved by a single processor. Each
processor uses the boundary values copied from neighboring subdomains.

38

P = 4

n

n (a)
p = 16

fflffl-ffl

. LJ—1 LJ—1 1—1—1 1—i—1

— — — AZ
i

i^iim
(b)

Figure 27: (a) Strip decomposition and (b) patch decomposition of a 2-D
domain.

4.2.1 Domain Decomposition

To abstract the computer architecture, we assume that a set of p processors
can be assigned to run the code and that these processors implement a
message passing system. For simplicity the original domain is assumed to
be a square of size n x n.

The 2-D version of the algorithm was \ \rallelized. There are two tech-
niques available for the decomposition of 2-D domains, the strip decompo-
sition and the patch decomposition which are shown in Figure 27.

Strip decomposition is implemented by dividing the original domain in
subdomains of n x j, and it might be thought of as a 1-D decomposition.
With strip decomposition each subdomain needs to exchange data with two
neighbors except the subdomains at the boundaries of the original domain
which communicate with only one neighbor.

The communication time for an interior subdomain was defined by Zhu17

as

TD2l = 2(a + 8ßn) (63)

where a is the communication start-up time, ß is the time required to send
one byte of data, and the 8 means that the data are represented as double

39

Figure 28: Column decomposition of a 3-D domain is an immediate exten-
sion of the patch decomposition of 2-D domains.

precision variables (their size is eight bytes).
Patch decomposition is implemented by dividing the original domain in

With this method each processor has to communicate with four

neighbors unless it is situated on the boundaries of the original domain and
it has two or three neighbors. For simplicity it is assumed that p is an even
square number and n is evenly divisible by y/p. The communication time
for an internal subdomain is

s/v x VP

TD22 =4{a + 8ß (64)

For a fixed grid size, Tß22 decreases with the number of processors since
in eqn (64) the number of processors appear at the numerator. In contrast,
Tß21 stays constant with the number of processors.

This made the patch decomposition an obvious choice for our implemen-
tation. The technique will also provide a straightforward extension to the
column decomposition of 3-D domains (see Figure 28).

4.2.2 Implementation of the Patch Decomposition

The programming model used for the implementation was single program
multiple data (SPMD). Each processor runs the same code on the data
corresponding to its subdomain. One processor has to perform the domain
decomposition and send the data to the other processors. This processor
was designated as the main task.

Assuming that there are p processors available for running the code
they can be arranged in a processor grid of pT x pc = p where pr is the

40

number of rows and pc is the number of columns. The size of the original
computational domain is m x n. It is possible to have subdomains of equal
sizes only if m and n are evenly divisible with pc and pT respectively. The
domain decomposition was implemented such that some processors receive
an extra row or extra column if m and n are not divisible by pc and pT.

Physical coupling of the subdomains is accomplished by the exchange
of internal boundaries. A processor sends the data from the cells next to
its boundaries to the neighboring processors if they exist. The receiving
processor assigns the received data to the cells of its respective boundaries.
If a processor does not have a neighbor in a certain direction the boundary
conditions are applied to that boundary. Since the algorithm uses a five-
point stencil only one row/column needs to be exchanged.

4.2.3 Message Passing

One of the goals of the project is to develop a portable code. A first step in
assuring the portability was to use a message passing system commonly
available on parallel supercomputers and on workstation clusters. This
system is the Message Passing Interface (MPI),18 which was adopted as
a standard in May 1994 by industry and academia. Hardware and software
vendors' implementation of MPI provides parallel program developers with
a consistent set of subroutines callable from FORTRAN77 and C. In our
code we made use of the basic point-to-point communications subroutines
and global communications subroutines. The point-to-point communica-
tion subroutines were used for the domain decomposition and boundary
exchange while the global communication srbroutines were used for conver-
gence checking. All message passing systems (PVM, MPL) support point-
to-point and global communications subroutines so that by using only the
basic set we provided for a facile portability to systems not supporting MPI.

4.2.4 Load Balancing

The load balancing for this code is performed by distributing an approx-
imately equal number of cells to each processor. This is accomplished by
the main task during the domain decomposition phase. Since the number of
floating point operations performed by each processor is the same, a static
domain decomposition is sufficient to ensure that the processors have an
equal share of the computing load. If the code takes were to allow for time-
dependent ionization or other localized phenomena which require additional

41

Speedup vs. Number of Processors

□ Explicit ■ Implicit

16 32 64

Number of Processors

Figure 29: Fixed grid (400 x 80) speedup results. Note the superlinear
speedup of the explicit mode.

operations in a limited region of the computational domain, then a dynamic
load balancing procedure may be necessary. A simple algorithm for dynamic
load balancing is the masked multiblock described by Borrelli et al.19 We
will implement the masking algorithm in future versions of the code if it
becomes necessary.

4.2. Results

In order to measure the performance of the code we applied the parallel
version to the plasma gun problem described in Section 3.3. The paral-
lel version was checked against the sequential version, and both produced
identical results.

There are two criteria generally used for the performance analysis of
parallel codes: (1) the speedup Sp = Tseq/Tp and (2) the efficiency Ep =
Sp/p, where Tseq is the time needed for the best sequential algorithm to
complete the task and Tp is the time needed for the parallel algorithm run
on a number of p processors to complete the same task. Note that the
definition of speedup used here is more rigorous and meaningful than the
one commonly used since it is based on the sequential version and not the
parallel version on one processor.

42

We ran the parallel code on the IBM SP2 with a fixed grid of size 400x80
on a processor pool of varying size: 4, 8, 16, 32 and 64 processors. The
speedup for the explicit and implicit modes is shown in Figure 29. As
expected the speedup increases with the number of processors assigned to
run the code. For the explicit mode the speedup is superlinear, which seems
to contradict Amdahl's law

SP = %r-=; :■ (65)
- communication

. / ,:_i *■ computation,*

Assuming that no time is used for communication and that the sum of the
computation time for aD processors is equal to the sequential computation
time, the maximum speedup is linear (for p processors the speedup is p).
However, Amdahl's law does not take in consideration the architecture of the
system used, in particular the cache effects. On the IBM RS/6000 machines,
which constitute the nodes of the SP2, the data is passed from the main
memory to the CPU through a data cache. A data cache miss involves a
delay of eight CPU cycles while the data in the cache can be accessed in
one cycle.20 Noting that an add and multiply operation (a FLOP) takes one
CPU cycle the conclusion is that a data cache miss decreases the performance
significantly. By increasing the number of processors in the pool and keeping
the overall problem size constant, we reduced the amount of data assigned
to a processor. Its data cache could hold more data thus reducing the
number of cache misses and improving the performance, which explains the
superlinear speedup. The same behavior was observed by Michl et al., on a
cluster of IBM RS/6000/500 workstations.21

The speedup for the explicit mode is higher than that for the implicit
mode because the implicit mode is the more computationaly intensive and
is, therefore, less sensitive to cache misses. One has to be careful when
comparing the results presented in Figure 29 since the number of iterations
until convergence is reached for the implicit mode depends on the number
of processors used.

The trend of the speedup shows an increasing slope for both explicit
and implicit modes which indicates that the code is far from communication
saturation. Saturation occurs when the time spent on communications be-
comes comparable with the computation time. If the number of processors
is increased and the size of the subdomains becomes smaller, each processor
will have fewer computations to perform, but the total time spent in ex-
changing the data on the boundaries will increase. The total time spent for

43

boundary exchange can be found using the formula for the communication
time for an internal subdomain [eqn(64)] and multiplying it with the number
of processors in a pool p,

Tbdry exch = pTß72 = 4.(crp + 8ßlly/p~). (66)

The total time spent on boundary exchanges varies proportionally with p.
For the processor pools with a non-square number of processors we have

run the code on grids organized as pT x pc and the transpose pc x pr, so that
the number of row cells versus column cells changed. The results showed
that a decomposition whose subdomains have longer rows performs better
than one with longer columns. This is consistent with the data cache misses
that were observed previously. An improvement of 20-30% in the measured
speedup was obtained by modifying the domain partitions. It should be
noted that this result is particular to IBM architecture, and the dependency
of the obtained speedup on domain decomposition will vary on other archi-
tectures. The speedup results shown in Figure 29 for 8 and 32 processors
have been averaged.

In order to eliminate the cache effects from the performance analysis we
ran the code on grids that scaled with the number of processors. The size of
the grid on each processor remained constant. As the number of processors
was increased, the grid increased proportionly. The speedup results are
presented in Figure 30. Again note that the speedup is measured relative
to the sequential version of the code and not the parallel version run on a
single processor.

Th " speedup for a perfectly parallel code for the scaled grid is unity for
any number of processors. Our results show a speedup that is less than
unity and it decreases with the number of processors. This is an expected
result since the total communication time increases with the number of
processors. Since the slope of the speedup is gradual and it appears to
flatten, we conclude that the parallel code performs satisfactorily on scaled
grids.

5 Professional Interactions

5.1 Project Personnel

The personnel directly involved in this project are listed below.

44

SoeeduD vs. Number of Processors

Nimber or i 4 8 16 32 64

50x10 100x20 100x40

and

200x20

200x40 200x80

and

400x40

400x80

Figure 30: Scaled grid (50 x 10 per processor) speedup results.

Name Position
Uri Shumlak
D. Scott Eberhardt
Thomas R. Jarboe
Byoungsoo Kim
Ogden S. Jones
Bogdan Udrea
David Taflin

Research Assistant Professor
Associate Professor
Professor
Research Associate
Graduate Student
Graduate Student
Graduate Student

5.2 Collaborations

5.2.1 Air Force Phillips Laboratory

Dr. Robert Peterkin and Dr. Thomas Hussey of the High Energy Plasma
Physics Division on parallelization approaches to MACH3 and on the 3-
D Rayleigh-Taylor instability in solid liners. Additional discussions have
included liner stabilization by a sheared axial flow.

45

5.2.2 Lawrence Livermore National Laboratory

Dr. Charles Hartman of the Magnetized Plasmas Division on stabilization
of the z-pinch using sheared axial flows. This collaboration resulted in the
publication listed below.

5.2.3 University of Michigan

Prof. Bram van Leer, Prof. Kenneth Powell, and Prof. Philip Roe of the
Aerospace Engineering Department on approximate Riemann solvers for the
MHD plasma model and the zero eigenvalue issue.

5.2.4 University of Colorado

Prof. Steve McCormick of the Applied Math Department on three-dimensional
multigrid algorithms.

5.2.5 University of Washington

Prof. Randy LeVeque of the Applied Math Department on approximate
Riemann solvers and their applications to multidimensional problems.

5.3 Publications

A journal article has been submitted to the Journal of Computational Physics.
The title is "An Implicit Approximate Riemann Solver for Non-Ideal Mag-
netohydrodynamics" by 0. S. Jones, U. Shumlak, and D. S. Eberhardt. It
has beei. accepted pending revisions.

A journal article resulting from the collaboration with the Air Force
Phillips Laboratory and Lawrence Livermore National Laboratory was pub-
lished. The article is titled "Sheared Flow Stabilization of the m = 1 Kink
Mode in Z-Pinches" by U. Shumlak and C. W. Hartman. The citation is
Physical Review Letters 75 (18), 3285 (1995).

5.4 Presentations

A paper explaining our project was presented at the Twenty-First Annual
IEEE International Conference on Plasma Sciences, Santa Fe, New Mex-
ico, June 1994. The title was "An Implicit Algorithm for the Ideal MHD
Equations."

46

A paper describing our completed two-dimensional parallel code was pre-
sented at the Seventh Joint EPS - APS International Conference on Physics
Computing, Pittsburgh, Pennsylvania, June 1995. The title was "An Im-
plicit Approximate Riemann Solver for Multi-Dimensional MHD Computa-
tions on Parallel Computers."

A paper discussing the magnetic reconnection results was presented at
the Thirty-Seventh Annual American Physical Society Meeting of the Di-
vision of Plasma Physics, Louisville, Kentucky, November 1995. "Time-
Dependent Calculations of Resistive Tearing Instabilities Using a New Im-
plicit MHD Solver."

A paper presenting the findings of the stabilization of the z-pinch by
sheared axial flows was presented at the Thirty-Seventh Annual American
Physical Society Meeting of the Division of Plasma Physics, Louisville, Ken-
tucky, November 1995. "Sheared Flow Stabilization of the m = 1 Kink Mode
in Z-Pinches."

6 Conclusions

The successful development of the two-dimensional, viscous, resistive version
of the advanced implicit algorithm and the implementation of the algorithm
on parallel architectures indicate that we are making significant progress
toward our project objectives. This research project has been presented at
an international conference, and more presentations are planned. A journal
article has been submitted to a refereed journal and its acceptance seems
likely.

Valuable collaborations have been formed w*th the Air Force Phillips
Laboratory, Lawrence Livermore National Laboratory, and other universi-
ties.

The continuing development of this project will include extending the
algorithm to three dimensions, installing the three dimensional algorithm
into Phillips Laboratory's MHD code, MACH3, and applying the code to
plasma experiments to calibrate the code and gain physical insight.

References

[1] U. Shumlak, T. W. Hussey, and R. E. Peterkin, Jr., IEEE Transaction
on Plasma Science 23, (1995).

47

2] B. A. Nelson, T. R. Jarboe, D. J. Orvis, L. McCullough, J.■ Xie, C.
Zhang, and L. Zhou, Phys. Rev. Lett. 72, 3666 (1994).

3] F. M. Lehr, A. Alaniz, J. D. Beason, L. C. Carswell, J. H. Degnan, J. F.
Crawford, S. E. Englert, T. J. Englert, J. M. Gahl, J. H. Holmes, T. W.
Hussey, G. F. Kiuttu, B. W. Mullins, R. E. Peterkin, Jr., N. F. Roderick,
P. J. Turchi, and J. D. Graham, J. Appl. Phys. 75, 3769 (1994).

4] H. P. Furth, J. Kileen, and M. N. Rosenbluth, Phys. Fluids 6, 479 (1963).

5] H. Ok and D. S. Eberhardt, "Solution of Unsteady Incompressible
Navier-Stokes Equations Using an LU Decomposition Scheme," AIAA-
91-1611 (1991).

6] S. Yoon and A. Jameson, AIAA J. 26, 1025 (1988).

7] P. L. Roe, J. Comp. Phys. 43, 357 (1981).

8] R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser
Verlag, Boston (1992).

9] M. Brio and C. C. Wu, J. Comp. Phys. 75, 400 (1988).

10] A. L. Zachery and P. Colella, J. Comp. Phys. 99, 341 (1992).

11] K. G. Powell, B. van Leer, and P. L. Roe, Private Communication,
1994.

12] H. P. Furth, J. Killeen, and M. N. Rosenbluth, Phys. Fluids 6(4), 459
(1963;.

13] H. P. Furth, Phys. Fluids 28(6), 1595 (1985).

14] J. Killeen and A. I. Shestkov, Phys. Fluids 21(10), 1746 (1978).

15] D. Schnack and J. Killeen, J. of Comp. Physics 35, 110 (1980).

16] Al Geist, A. Beguelin, J. Dongara, W. Jiang, R. Manchek, V. Sun-
deram, PVM 3 User's Guide and Reference Manual, 1994.

17] J. Zhu, On the Implementation Issues of Domain Decomposition Algo-
rithms for Parallel Computers Parallel CFD Conference, 1992.

18] Message Passing Interface Forum MPl: A Message Passing Interface
Standard, May 5, 1994.

48

[19] S. Borrelli, A. Matrone, P. Schiano, A Multiblock Hypersonic Flow
Solver For Massively Parallel Computers, Parallel CFD Conference,
1992.

[20] IBM Corp., Optimization/Tuning Guide for XL FORTRAN and XLC.

[21] T. Michl, S. Wagner, M. Lenke, A. Bode, Dataparallel Implicit Navier-
Stokes Solver on Different Multiprocessors Parallel CFD Conference
1993.

49

